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Abstract
Purpose  To determine if an electrocardiogram-based artificial intelligence system can identify pneumothorax prior to 
radiological examination.
Methods  This is a single-center, retrospective, electrocardiogram-based artificial intelligence (AI) system study that included 
107 ECGs from 98 pneumothorax patients. Seven patients received needle decompression due to tension pneumothorax, and 
the others received thoracostomy due to instability (respiratory rate ≥ 24 breaths/min; heart rate, < 60 beats/min or > 120 beats/
min; hypotension; room air O2 saturation, < 90%; and patient could not speak in whole sentences between breaths). Trau-
matic pneumothorax and bilateral pneumothorax were excluded. The ECGs of 132,127 patients presenting to the emergency 
department without pneumothorax were used as the control group. The development cohort included approximately 80% of 
the ECGs for training the deep learning model (DLM), and the other 20% of ECGs were used to validate the performance. 
A human–machine competition involving three physicians was conducted to assess the model performance.
Results  The areas under the receiver operating characteristic (ROC) curves (AUCs) of the DLM in the validation cohort 
and competition set were 0.947 and 0.957, respectively. The sensitivity and specificity of our DLM were 94.7% and 88.1% 
in the validation cohort, respectively, which were significantly higher than those of all physicians. Our DLM could also 
recognize the location of pneumothorax with 100% accuracy. Lead-specific analysis showed that lead I ECG made a major 
contribution, achieving an AUC of 0.930 (94.7% sensitivity, 86.0% specificity). The inclusion of the patient characteristics 
allowed our AI system to achieve an AUC of 0.994.
Conclusion  The present AI system may assist the medical system in the early identification of pneumothorax through 12-lead 
ECG, and it performs as well with lead I ECG alone as with 12-lead ECG.

Keywords  Artificial intelligence · Electrocardiogram · Deep learning · ECG12Net · Pneumothorax · Out-of-hospital

 *	 Chin Lin 
	 xup6fup0629@gmail.com

1	 Division of Cardiology, Department of Internal Medicine, 
Tri‑Service General Hospital, National Defense Medical 
Center, Taipei, Taiwan, ROC

2	 Division of Cardiovascular Surgery, Department of Surgery, 
Tri‑Service General Hospital, National Defense Medical 
Center, Taipei, Taiwan, ROC

3	 Department of Cardiology, Cheng Hsin Hospital, Taipei, 
Taiwan, ROC

4	 Planning and Management Office, Tri‑Service General 
Hospital, National Defense Medical Center, Taipei, 
Taiwan, ROC

5	 Division of Colorectal Surgery, Department of Surgery, 
Tri‑Service General Hospital, National Defense Medical 
Center, Taipei, Taiwan, ROC

6	 Department of Ophthalmology, Tri‑Service General Hospital, 
National Defense Medical Center, Taipei, Taiwan, ROC

7	 Graduate Institute of Life Sciences, National Defense 
Medical Center, No.161, Min‑Chun E. Rd., Sec. 6, Neihu, 
Taipei 114, Taiwan, ROC

8	 School of Medicine, National Defense Medical Center, 
Taipei, Taiwan, ROC

9	 School of Public Health, National Defense Medical Center, 
Taipei, Taiwan, ROC

http://orcid.org/0000-0003-2337-2096
http://crossmark.crossref.org/dialog/?doi=10.1007/s00068-022-01904-3&domain=pdf


	 C.-C. Lee et al.

1 3

Abbreviations
ECG	� Electrocardiogram
AI	� Artificial intelligence
DLM	� Deep learning model
ROC	� Receiver operating characteristic
AUC​	� Areas under the receiver operating characteristic 

curves
ED	� Emergency department
BMI	� Body mass index

Introduction

Chest pain is one of the most common complaints that calls 
for emergency medical services or admission to the emer-
gency department (ED) [1, 2]. Pneumothorax, the presence 
of air in the pleural space, is a possible cause of chest pain 
and needs proper management even in prehospital situations. 
Therefore, early detection of pneumothorax is an important 
issue.

The incidence of spontaneous pneumothorax is approxi-
mately 17–24/100,000 in males and 1–6/100,000 in females, 
and it shows a bimodal age distribution with a peak at 
15–34 years and another peak at ages older than 55 years. 
[3–5] The overall in-hospital mortality rate of spontaneous 
pneumothorax is approximately 1.7–3%, and it shows an 
obvious age-dependent trend that can rise up to 15.93% in 
the > 90-year-old group [5, 6]. However, up to 31.04% of 
patients with spontaneous pneumothorax are misdiagnosed 
in prehospital care and undergo delayed adequate manage-
ment [6].

Clinical presentations of pneumothorax include dysp-
nea, chest pain and tachycardia. Physically, asymmetrical 
expansion of the chest wall, diminished or absent breathing 
sounds, hyperresonance upon percussion, and decreased tac-
tile fremitus are often seen [7, 8]. The definite diagnosis is 
based on imaging examinations, including chest plain film, 
ultrasonography, or computer tomography [9, 10]. Tools to 
screen for pneumothorax before imaging may assist in early 
decision-making for patients with chest pain or dyspnea.

Electrocardiography is the first modality that is used to 
manage patients with acute chest pain. There are significant 
electrocardiogram (ECG) changes in patients with pneumo-
thorax, including axis deviation, reduced voltage and poor 
R wave progression in precordial leads, and T wave inver-
sion, occurring in only approximately 20% of patients with 
spontaneous pneumothorax [11–15]. There are no studies 
regarding physicians’ capacities to identify pneumothorax by 
ECG. Such evidence supports the difficulties for physicians 
in detecting pneumothorax by ECG alone. Moreover, utiliz-
ing ECG to determine pneumothorax is not a standard in 
many parts of the world, leading to the low performance of 
physicians in detecting pneumothorax by ECG. Importantly, 

ECG presentations in pneumothorax may exhibit a similar 
pattern to those of myocardial infarction or pulmonary 
embolism [16, 17]. All the results indicate that ECG may 
provide important information for the differential diagnosis 
in patients with acute chest pain.

Since 2012, deep learning models (DLMs) have been 
used in numerous applications for ECG recognition. Ini-
tially, artificial intelligence (AI) was trained to detect well-
known ECG changes, such as arrhythmia, hyperkalemia, 
and hypokalemia, and it showed noninferior performance 
compared with experienced physicians [18–20]. Further-
more, using the associated database, AIs can screen for 
cardiac contractile dysfunction, recognize aortic stenosis, 
predict atrial fibrillation, and estimate age or sex through 
ECG, which are difficult for physicians [21–24]. These 
results highlight the critical role of AI in classifying ECGs 
for medical applications.

Since ECG changes in pneumothorax have been well 
reported, we hypothesized that there would be specific 
ECG changes in patients with pneumothorax that could 
be detected by DLM. Our study aimed to train a DLM to 
distinguish pneumothorax and non-pneumothorax through 
a 12-lead ECG. Using an AI might help clinicians to take 
pneumothorax into account and thereby shorten the diagnos-
tic process and optimized management.

Methods

Data source

This was a single-center retrospective study in which all the 
data were collected from Tri-Service General Hospital, Tai-
pei, Taiwan. The pneumothorax cases were collected from 
January 2016 to May 2019 in our ED with the following 
inclusion criteria: (1) at least one chest plain film to confirm 
pneumothorax, (2) needle decompression (clinically suspi-
cious tension pneumothorax), tube thoracostomy, or cath-
eter thoracostomy due to instability (respiratory rate ≥ 24 
breaths/min; heart rate, < 60 beats/min or > 120 beats/min; 
hypotension; room air O2 saturation, < 90%; and patient 
couldn’t speak in whole sentences between breaths) [25], and 
3) at least one ECG before intervention. Minimal pneumo-
thorax (< 20%), bilateral pneumothorax, traumatic pneumo-
thorax, combined hemothorax and pneumothorax, or other 
indications of tube or catheter thoracostomy were excluded. 
All patients with pneumothorax underwent ECG examina-
tion due to the presentations of chest tightness, chest pain, 
or dyspnea. Seven patients received needle decompression 
due to tension pneumothorax, and all the patients received 
a thoracostomy. All ECG recordings were collected by a 
Philips 12-lead ECG machine (PH080A) in digital format, 
and the sampling frequency was 500 Hz, with 10 s recorded 
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in each lead. The study was given ethics approval by the 
institutional review board (IRB NO. C202005055).

Development cohort and validation cohort

There were 107 pneumothorax ECGs from 98 patients 
enrolled in this study. Non-pneumothorax ECGs were col-
lected from patients in the ED during the same period. 
Those with history of pneumothorax were excluded. A 
total of 132,020 ECGs from 66,485 patients were defined 
as non-pneumothorax ECGs in this study. The correspond-
ing patient characteristics and laboratory data were also col-
lected and assigned for each ECG record. The data were 
divided into a development cohort (80%) and a valida-
tion cohort (20%), and there were no overlapping patients 
between the two groups.

The development cohort comprised 99,575 non-pneumo-
thorax ECGs and 88 pneumothorax ECGs. All the data were 
divided into five subgroups for fivefold cross-validation, 
which used four subgroups for the training set and the other 
one subgroup for the tuning set in each fold. There were no 
overlapping data between these five subgroups. The valida-
tion cohort included 32,445 non-pneumothorax ECGs and 
19 pneumothorax ECGs from different patients. The algo-
rithm is displayed in Fig. 1.

The implementation of the deep learning model

We have developed an 82-convolutional-layer attention DLM 
called ECG12Net. Its technological details, including model 
architecture, data augmentation, and model visualization, 
were described in a previous publication [18]. Based on the 
same architecture, we developed two new DLMs for detect-
ing pneumothorax and recognizing the lesion side (left or 
right). All the data input for the first DLM were divided into 
two categories, pneumothorax and non-pneumothorax, and 
the output of the model was a 2-class softmax output. The 
second DLM was trained by pneumothorax ECGs labeled 
left or right pneumothorax, and the output of the model was 
a 2-class softmax output for pneumothorax side recognition.

The signal length of our original 12-lead ECG was 5000, 
but the length of the standard input format to ECG12Net has 
a length of 1024. To complete the training process, we ran-
domly cropped a signal with a length of 1024 as input. For 
the inference stage, the 9 overlapping signals of length 1024 
based on interval sampling were used to generate predictions 
and were averaged as the final prediction. The oversampling 
process was used in the training step because of the rare 
proportion of pneumothorax in our dataset. The settings for 
the training model were as follows: (1) Adam optimizer with 
standard parameters (β1 = 0.9 and β2 = 0.999) and a batch 

Fig. 1   Summary of the study 
datasets and development/
validation cohort generation. 
The study datasets comprised 
107 pneumothorax ECGs and 
132,020 non-pneumothorax 
ECGs, which were randomly 
divided into a development 
cohort (80%) and a validation 
cohort (20%). Fivefold cross-
validation was used for training 
the DLM and selecting hyperpa-
rameters in the development 
cohort. N number of records, 
ECG electrocardiogram
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size of 36 for optimization; (2) learning rate of 0.001; and 
(3) a weight decay of 10−4. The 100th epoch model was 
used as the final model, whose performance in the validation 
cohort was only evaluated once.

Human–machine competition

The human–machine competition was performed by using 
a validation database to verify the capacities of our DLM 
in detecting pneumothorax by ECG. The database has 
100 ECGs, including 81 non-pneumothorax, 11 left-side 
pneumothorax and 8 right-side pneumothorax. Three doc-
tors participated in the competition (two emergency physi-
cians and one cardiologist), and the tests were conducted 
through an online standardized data entry program without 
patient information except the 12-lead ECGs. All the physi-
cians participating in the study read the provided knowl-
edge describing ECG changes in pneumothorax before the 
human–machine competition. The sensitivity, specificity, 
and kappa value were calculated for comparison with our 
DLM.

Statistical analysis and model performance 
assessment

All the analyses were based on ECGs. We analyzed the char-
acteristics and laboratory results of the pneumothorax and 
non-pneumothorax groups. The results were presented as 
the means and standard deviations for continuous variables 
and as numbers and percentages for categorical variables. 
We used Student’s t test or the Chi /square test to compare 
the results between two groups, as appropriate, and p val-
ues < 0.05 were considered to be statistically significant. The 
statistical analysis was performed with R version 3.4.4, and 
the package MXNet version 1.3.0 was used to implement 
our DLM.

In the primary analysis, we focused on the performance 
of our DLM compared with human experts. Receiver operat-
ing characteristic (ROC) curves and areas under the curve 
(AUCs) were applied to evaluate the performance of pneu-
mothorax recognition between DLMs and human experts. 
The human–machine competition was displayed by global 
performance rankings that are based on the 3-class (non-
pneumothorax, right-side pneumothorax, and left-side 
pneumothorax) kappa values. In the secondary analysis, we 
evaluated the validation cohort. ROCs and AUCs were also 
applied to analyze the lead-specific performance on pneu-
mothorax cases. Subgroup analysis and matched analysis 
for pneumothorax diagnosis in the validation cohort were 
performed based on the significant differences in charac-
teristics. The matched analysis used a proportion of 1:20 to 
match a control with the same gender, similar age (differ-
ence < 5 years old) and BMI (difference < 3 kg/m2). We also 

applied the patient characteristics and clinical information to 
our DLM, and the results of univariable and multivariable 
logistic regression analyses were displayed.

Results

The patient characteristics corresponding to pneumothorax 
and non-pneumothorax ECGs are shown in Table 1. Fig-
ure 2 shows the performance comparison of the DLM and 
human experts in pneumothorax recognition. We presented 
the ROC curves for the predictions of the DLM in the valida-
tion cohort (AI-all), involving all ECGs, and the competition 
set (AI-sub), involving 100 ECGs. The AUCs were 0.9469 
and 0.9565, respectively. The sensitivity and specificity of 
our DLM were 94.7% and 88.1%, respectively, using an opti-
mal cutoff point in the validation cohort, which is better than 
those of the physicians participating in the study.

The global performance of discriminating among non-
pneumothorax ECGs, left-side-pneumothorax ECGs and 
right-side-pneumothorax ECGs by our DLM and human 
experts are displayed in Fig. 3. The DLM achieved the best 
performance, with a 3-class kappa value of 0.806, while the 

Table 1   Corresponding patient characteristics of pneumothorax and 
normal ECGs

BMI body mass index, AMI acute myocardial infarction, CAD coro-
nary artery disease, HF heart failure, AF: atrial fibrillation, DM 
diabetes mellitus, HTN hypertension, CKD chronic kidney disease, 
COPD chronic obstructive pulmonary disease

Pneumo-
thorax 
(n = 107)

Normal (n = 132,020) p value

Dataset 0.101
 Development cohort 88 (82.2%) 99,575 (75.4%)
 Validation cohort 19 (17.8%) 32,445 (24.6%)

Gender (Male) 78 (79.6%) 68,801 (52.1%)  < 0.001
Age (years) 40.9 ± 24.2 63.2 ± 19.3  < 0.001
Height (cm) 168.5 ± 7.4 162.0 ± 19.2 0.012
Weight (kg) 57.3 ± 10.2 64.0 ± 14.2  < 0.001
BMI (kg/m2) 20.2 ± 3.4 24.6 ± 8.3  < 0.001
Disease history
 AMI 0 (0.0%) 4988 (3.8%) 0.055
 Stroke 1 (1.0%) 25,664 (19.4%)  < 0.001
 CAD 10 (10.2%) 35,760 (27.1%)  < 0.001
 HF 0 (0.0%) 14,798 (11.2%)  < 0.001
 AF 1 (1.0%) 9225 (7.0%)  < 0.001
 DM 6 (6.1%) 35,151 (26.6%)  < 0.001
 HTN 11 (11.2%) 57,045 (43.2%)  < 0.001
 CKD 1 (1.0%) 18,114 (13.7%)  < 0.001
 Lipidemia 8 (8.2%) 40,169 (30.4%)  < 0.001
 COPD 12 (12.2%) 27,688 (21.0%)  < 0.001
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human experts presented values of 0.110, 0.067, and 0.052. 
The DLM only mistook one left-side-pneumothorax ECG 
for non-pneumothorax ECG. Lead-specific performance on 
pneumothorax was analyzed in the validation cohort, and 
the results are shown in Fig. 4. Lead I made a major contri-
bution, achieving 94.7% sensitivity and 86.0% specificity, 
with an AUC of 0.930, followed by lead aVR and lead V5. 
The worst performance was displayed by lead V2, with an 
AUC of 0.624.

In Supplemental Fig. 1, we shared four representative 
ECGs in our validation cohort, and we found that our DLM 
presented more focus on the precordial lead. Case A ECG 
was a left-side-pneumothorax ECG with low voltage and 
poor R wave progression in the lateral precordial lead (V4-
V6). Case B was a right-side-pneumothorax ECG with the 
characteristics of counterclockwise rotation and a negative 
or isoelectric QRS wave with low voltage in the lead aVL. 
Case C and case D were non-pneumothorax ECGs that 
were misdiagnosed as left-side and right-side pneumotho-
rax, respectively. Negative lead aVL with a left ventricular 
hypertrophy pattern was noted in case C, while counter-
clockwise rotation and low voltage in lead aVL were noted 
in case D.

The subgroup analysis and matched analysis for pneumo-
thorax diagnosis in the validation cohort are shown in Fig. 5. 

The forest plot presents the diagnostic odds ratio (OR) based 
on sensitivity and specificity. The overall diagnostic OR was 
89.2 (95% conference interval 16.9–472.1), with 94.7% sen-
sitivity and 88.1% specificity. Stratification by sex showed 
no significant change in diagnostic OR, but the diagnos-
tic OR (29.1) was lower in young patients (age < 40). The 
major reason for this reduction was lower specificity, which 
was also present in the lean group (BMI < 20). Among the 
subgroup analyses, the subgroup of young, tall, lean males 
presented with the lowest specificity (46.8%) and diagnostic 
OR (12.3), which explained the importance of these three 
factors. The matched analysis revealed diagnostic ORs of 
23.1 (95% conference interval: 4.3–123.7) and 19.4 (95% 
conference interval: 3.6–104.2) in gender/age-matched and 
gender/age/BMI-matched patients, respectively, and both 
sensitivities showed unchanged but lower specificities.

Supplemental Fig. 2 demonstrates the results of univari-
able and multivariable logistic regression analysis on pneu-
mothorax in the development cohort. Male sex, young age, 

Fig. 2   Performance comparison of the deep learning model and 
human experts in pneumothorax recognition. The ROC curves were 
made by the predictions of the deep learning model in the validation 
cohort (AI-all) and competition set (AI-sub). The red and blue points 
represent visiting staff and residents, respectively. The triangle and 
square marks represent the emergency physicians and cardiologists, 
respectively. The AUCs were 0.9469 and 0.9565 in the validation 
cohort and competition set, respectively

Fig. 3   Location analysis of pneumothorax in the human–machine 
competition. Global performance is ranked based on the 3-class 
kappa values. Only the performances of discrimination of pneumo-
thorax location are presented
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and low BMI were independent risk factors for pneumotho-
rax. We performed a multivariable analysis that involved 
patient characteristics and disease histories. Chronic kid-
ney disease was correlated with a significantly lower risk 
of pneumothorax. We applied these results to our DLM in 
the validation cohort, and it revealed significantly better 
performance than analysis only with ECGs (Supplemental 
Table 1). The AUC rose from 0.9469 to 0.9944 (p value 
0.0269) with model 1 risk factors (characteristics and dis-
ease histories).

Discussion

Our DLM was trained by more than 130,000 ECGs, includ-
ing 107 pneumothorax ECGs, and it shows outstanding dis-
crimination, with an AUC of approximately 0.95, which is 
significantly better than that of our physicians in pneumo-
thorax detection. Importantly, using lead I alone can provide 

similar performance compared with 12-lead ECG. Patient 
characteristics enhanced the performance of our DLM, 
providing an AUC of 0.994. Increasing evidence supports 
conservative management for atraumatic pneumothorax 
[26]. Our DLM system might not guide the treatment for 
pneumothorax, but this study definitively provides a promis-
ing diagnostic supportive system for detecting spontaneous 
pneumothorax.

Our AI-ECG has extraordinary performance in detect-
ing pneumothorax and side discrimination, even with a sin-
gle lead, lead I, which can be applied to wearable devices 
to monitor high-risk patients in prehospital care and ED, 
and used in continuous ECG monitoring. Compared with 
chest plain film and computed tomography, ECG machines 
are widely available and cheaper devices. Although ultra-
sonography exhibits feasibility, high sensitivity and speci-
ficity for pneumothorax diagnosis, electrocardiography is a 
widespread and convenient examination even in rural areas 
or clinics. In ED, ECG is the first exam used for chest pain, 

Fig. 4   Lead-specific performance analysis of pneumothorax in the validation cohort. These are ROC curves with the specificity of the x axis and 
the sensitivity of the y axis
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which is the most common symptom of spontaneous pneu-
mothorax. Applying the AI-ECG system for pneumothorax 
detection may shorten the diagnostic process and avoid 
unnecessary examinations. Furthermore, taller individuals, 
smokers and patients with secondary pneumothorax have 
a high risk of recurrent pneumothorax [27, 28]. In such 
patients, we can use a wearable device with a lead I ECG 
monitor that will sound an alarm when it reoccurs, which 
is not easily performed by an imaging diagnostic method. 
Collectively, although the overall incidence of pneumotho-
rax is low, our system can be applied in the field of wear-
able devices to monitor high-risk patients in prehospital care 
and ED and thus serve as a diagnostic supportive system to 
detect spontaneous pneumothorax.

We found that some left-side-pneumothorax ECGs pre-
sent with low voltage and poor R wave progression in the 
lateral precordial lead, which might be due to the accumu-
lation of air in the left pleural space. In right-side pneumo-
thorax, some ECGs present with a rightward shift of QRS 
in the precordial lead and a negative QRS wave with low 
voltage in the lead aVL. Among right-side-pneumothorax 
ECGs enrolled in our study, the proportions of counterclock-
wise rotation, clockwise rotation and no rotation were 28%, 
20% and 52%, respectively. According to the findings, the 
rotation of pneumothorax ECG was not a specific feature to 
discriminate the lesion side. The detailed mechanisms for 
distinguishing pneumothorax by ECG remain unclear. By 
using a large, annotated dataset, our AI-ECG both identi-
fied pneumothorax and conducted side discrimination from 
ECGs.

In the subgroup analysis in Fig. 5, we found that there 
was no obvious difference in the diagnostic OR between 
the age < 40 group and the age > 40 group. We knew that 
the incidence of pneumothorax shows a bimodal age dis-
tribution, with a peak in individuals aged approximately 
15–34 years relating to primary spontaneous pneumothorax 
and another peak in elderly individuals relating to secondary 
spontaneous pneumothorax [3–5]. Accordingly, we suggest 
that our AI-ECG could perform equally well in primary and 
secondary pneumothorax detection and location discrimina-
tion. Interestingly, our results indicated that the diagnostic 
OR in the female subgroup was lower than that in the male 
subgroup, and the lowest diagnostic OR existed in the male, 
young (age < 40), and lean (BMI < 20) subgroups. These 
results suggest that our AI-ECG took age, BMI, and sex 
into consideration when identifying pneumothorax, which 
warrants further investigation

. [21].
Traumatic pneumothorax was excluded from our study 

due to variant changes in heart rate, rhythm or ECG caused 
by trauma. For instance, cardiac or vascular injury can 
induce arrhythmia, left ventricular injury can cause STT 
changes or T wave inversion, and cardiac tamponade can 

present with tachycardia and low voltage on ECG [29, 30]. 
In traumatic brain injury, prolongation of QTc and giant T 
wave inversion are the most typical findings, and ischemia-
like STT changes, Q waves and U waves may also be 
observed [31, 32]. To avoid unnecessary interference, trau-
matic pneumothorax was not enrolled in our study. Bilateral 
pneumothorax and combined pneumothorax with hemotho-
rax were also excluded to reduce confounding ECG features 
during training of the DLM.

There are certain limitations in our study. First, there may 
be some concern about the number of pneumothorax cases 
in our model. Although the AI-ECG has shown good per-
formance in pneumothorax detection, there is still room to 
improve it with a large dataset. Second, we do not categorize 
primary, secondary or tension pneumothorax in our model. 
Among 108 pneumothorax ECGs enrolled in the study, only 
7 ECGs were obtained from patients who underwent nee-
dle compression due to suspicion of tension pneumothorax. 
Third, the small sample size of tension pneumothorax is a 
limitation of our study. Further investigation is needed to 
determine whether the current AI-ECG can be applied to 
detect ventilated patients, bilateral pneumothorax and trau-
matic pneumothorax. Finally, the mechanism by which ECG 
distinguishes pneumothorax remains unclear. Prospective 
studies and prognostic changes after applying the AI-ECG 
in clinical practice were not performed in the current study 
and warrant further evaluation in future studies.

Conclusion

We developed a DLM that can both detect pneumothorax 
with an AUC of 0.9469 and a sensitivity and specificity of 
94.7% and 88.1%, respectively, and perfectly discriminate 
the location of pneumothorax. Using +*ead I alone provides 
similar performance to a 12-lead ECG (sensitivity: 94.7%, 
specificity: 86.0%, AUC: 0.930), which could be applied to 
early recognition of pneumothorax, especially in prehospital 
settings, ED and continuous monitoring, although further 
prospective and large studies are needed to confirm the per-
formance of our AI-ECG.
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